28 research outputs found

    BotSitter

    Get PDF
    As society progresses into an era where both parents work, whether it is online or in person, children in the home may be put in dangerous situations if they are not given the attention they need. The BotSitter is an automated system that follows the child around and makes an audio alarm to alert both the child and the nearby guardian. Using RSSI trilateration, predetermined danger areas, and embedded controls, the BotSitter will be able to follow the child. The device can manage to keep track of the child for the guardian while being almost completely automated outside of setup

    An overview of the oil-brine interfacial behavior and a new surface complexation model

    Get PDF
    Abstract The few existing surface complexation models (SCM) for the brine-oil interface have important limitations: the chemistry of each crude oil is not considered, they cannot capture the water/non-polar hydrocarbons surface charge, the interactions between Na+ and the acid sites are not included, and the equilibrium constants for the adsorption reactions are not validated against experimental data. We address the aforementioned constraints by proposing an improved diffuse-layer SCM for the oil-brine interface. The new model accounts for the chemistry of crude oils by considering surface sites linearly dependent on the TAN (total acid number) and TBN (total base number). We define weak sites to account for the negative surface charge observed for non-polar hydrocarbons in water. We optimize the parameters of our model by fitting the model to reported zeta potential measurements of oil in aqueous solutions. When we validate the optimized model against different experimental data sets, it generally shows a good performance in predicting the surface charge of oil in different brines with different pHs. We show that the acid and base numbers are only useful as a qualitative estimation of the distribution of polar groups at the oil surface, and more sophisticated analysis is necessary to quantify the chemistry of the oil-brine interface

    Modelling the solubility of gases in aqueous solutions in the context of renewable energy production with focus on geothermal plants, energy storage, and carbon sequestration

    No full text
    The interactions between aqueous solutions, gases, and minerals dictate the extent of issues such as scaling, degassing, and corrosion, which have a major impact on the performance of a vast number of industrial applications (e.g., geothermal plants, oil and gas production facilities, natural gas storage in saline aquifers, flue gas scrubbing, carbon sequestration, etc.). Among the different software programs available for aqueous chemistry calculations, PHREEQC and Reaktoro were tested and validated against a wide dataset of gas solubility measurements. For the datasets considered, the two programs essentially led to the same outcome with only a few discrepancies observed. Yet, the agreement between the models and experimental data was greatly affected by the selected database. The models implemented in PHREEQC and Reaktoro were also compared with the experimental bubble point pressure of fluids sampled at several geothermal wells. The satisfactory performance of both PHREEQC and Reaktoro for describing different chemical systems at a wide range of pressures and temperatures showcases their versatility and practicality for assisting in the design and optimization of various processes relevant to the energy transition (e.g., geothermal exploitation, CO2 /H2 transport and storage)
    corecore